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Abstract

Deep Mining 2012 is the sixth in a series of international seminars on deep and high stress mining which
began with a seminar held in Perth in November 2002, almost a decade ago. The early announcements for
this seminar listed ten seminar themes. This paper seeks to make contributions to the discussion of progress
made in four of these themes — geomechanics risks, risk assessment and management, rock behaviour
under high stress, and numerical modelling — largely, but not only, through a review of the papers published
in the proceedings of the five previous seminars. Particular emphasis is placed on the'risks associated with
the new generation of block and panel caving operations or “super caves”. Somegsremaining challenges in
the four theme areas discussed are also identified.

1 Introduction

Deep Mining 2012 is the sixth in a series of international seminarsfon deeprand high stress mining which
began with a seminar held in Perth in November 2002, almost,a decade ago. The writer has not attended,
or contributed to, any of the five previous seminars in thi§series, and\s@ approaches the task of preparing
this keynote paper from the perspective of a newcomer to these Deep and High Stress Mining seminars.

The early announcements for this seminar listed 10 seminar themes: geomechanics risks, financial risks,
case studies, numerical modelling, rock behaviour under high stress, rockburst and seismicity monitoring,
ground support, risk assessment and management,4ventilation, and blasting. This paper seeks to make
contributions to the discussion of progress “made,indfour of these themes: geomechanics risks, risk
assessment and management, rock behavjetigunder high stress, and numerical modelling — largely, but not
only, through a review of the papers published in the proceedings of the five previous seminars. Some
remaining challenges in these areasgare alse.identified. For the reasons to be outlined in Section 2, this
paper will consider some methodsgef deegyandihigh stress mining more than others.

2 Deep and higinstress mining methods

The papers presented to'the previous seminars have dealt with a wide range of generic underground
mining methods, including:

e deep tabular orebody mining (including longwall methods, remnant mining and the mining of
shaft pillars)

e longwall coal mining

e block and panel caving

e sublevel caving

e underhand and overhand cut-and-fill and drift-and-fill stoping
e bench-and-fill stoping

e sublevel and long hole open stoping (including narrow vein methods such as long hole retreat or
Avoca and modified Avoca methods)

e room-and-pillar mining

e variants of these methods, including their use in pillar recovery and sill pillar mining.
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Over a long career, the writer has had some association with mines using all of these methods. However,
during the 10 years in which the seminar series has been in operation, his major mining interest and
experience has been in block and panel caving (Brown, 2007a, 2007b). He also has a long-standing
association with metalliferous mining by drift-and-fill and bench-and-fill methods (Been et al., 2002; Brown,
1999). The observations drawn from the writer’'s own experience will deal mainly with these mining
methods. Any reference to other mining methods, particularly the mining of deep, tabular orebodies in
South Africa, will be through reference to papers published in the proceedings of this seminar series and
elsewhere.

3 Geomechanics risks

3.1 Definitions

The first question to be answered is how do we define a geomechanics risk? The literature on risk analysis,
assessment and management contains a range of definitions of risk and associated terms. Here, the
definitions given by AS/NZS ISO 31000: 2009 (Standards Australia, 2009) will be_used.Jit should be noted
that these definitions differ, sometimes marginally and sometimes significantly, fream.those used in some
earlier publications, including those by the writer (Brown, 2007a; Brown and.Boath, 2009; Summers, 2000).
Standards Australia (2009) defines risk as “the effect of uncertainty on objectives” and a risk source as an
“element which alone or in combination has the potential to give rise to akisk”./In some earlier accounts, a
risk source appears to have been referred to as a hazard, defined in'the previous Australian Standard as “a
source of potential harm” (Standards Australia, 2004). Thisderm, is hot defined‘in AS/NZS 1SO 31000:2009.
The level of risk is defined as the “magnitude of a risk @F combinationfof risks, expressed in terms of the
combination of consequences and their likelihood”. This defifiition allows for the common practice in the
mining industry and elsewhere of quantifying risk as the product of the likelihood of the occurrence of an
event and the consequences of that event (Brown,s2007a; Brown and Booth, 2009; Steffen et al., 2008).
The Standards Australia (2009) definition of,an event'as an “occurrence or change of a particular set of
circumstances” is consistent with this usage.“The‘consequence of an event is the “outcome of an event
affecting objectives” and likelihood is the “echanceithat something will happen” (Standards Australia, 2009).

A risk evaluation process as applied to stope design is shown in Figure 1. The left hand column of Figure 1
identifies possible causes of stope failure. s suggested that, in terms of the Standards Australia (2009)
definitions, these occurrences afe best ‘described as events. Following an approach that is commonly
adopted in the mining industfy (Steffen et al., 2006; Tapia et al., 2007), in the central column risks are
categorised in terms of c6hAsequences as being expected fatalities, expected economic loss, loss of
production, probability of foerceymajeure, industrial action and stakeholder resistance. The right hand
column in Figurefl'is concerned/with the level of risk as defined by Standards Australia (2009). The question
then remains as towhat We mean by a geomechanics risk. For present purposes, and for consistency with
the terminology used in AS/NZS I1SO 31000:2009, a geomechanics risk will be taken to be a geomechanics-
related risk source, hazard or uncertainty that gives rise to events of the types listed in the left-hand
column of Figure 1, not only in stopes but in other underground mining excavations as well. This
“definition” will be interpreted rather liberally in that which follows.
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Figure 1 Risk evaluation process (Stacey et al., 2006)

3.2 Generic geomechanics risks in deep and high'Stxess mining

The nature of the uncertainty and the errors that provide the sources of geomechanics risk in geotechnical
engineering more broadly have been discussed widely in the literature. For example, Einstein and Baecher
(1983) classified the sources of uncertainty as:

e inherent spatial and temporal variability

e measurement errors (systématic orfandom)
e model uncertainty

e load uncertainty

e omissions.

Baecher and Christian (2003) described these sources of uncertainty as being aleatory (randomness) or
epistemic (lack of knowledge). Similarly, in discussing variability in soil properties, Phoon and Kulhawy
(1999) suggested that'there are three primary sources of geotechnical uncertainty — inherent variability,
measurement error, and transformation (or model) uncertainty. In discussing risk in a general engineering
context, in common with Baecher and Christian (2003) and others, Brown (2007a) concluded that there are
two general types of uncertainty:

e what we know we don’t know, or parameter uncertainty; and
e what we don’t know we don’t know, or conceptual uncertainty.

Recently, Hadjigeorgiou and Harrison (2011) provided a valuable account of uncertainty and the sources of
error in rock engineering. In discussing the use of rock mass classification schemes in the design of
underground excavations they identify two groups of errors. The first group consists of errors intrinsic to
the classification scheme used, including errors of omission, errors of superfluousness, and errors of
taxonomy associated with the requirement to select a particular classification rating value for a
geomechanical property. The second group of errors are associated with implementation, and include
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errors of circumstance, errors of convenience, errors of ignoring variability, and errors of ignoring
uncertainty.

Clearly, deep and high stress mining is susceptible to the geomechanics risks or hazards associated with
uncertainties and errors of these several types, as well as to other categories of risk (Sweeney and Scoble,
2006). It should be possible to develop a detailed (if not comprehensive) list of these risks or hazards and
their sources similar to that developed for open pit slopes by Brown and Booth (2009) who identified
geology, structure, rock mass, hydrogeology and geotechnical model hazards or risks. In discussing the
management of geotechnical risks in mining projects, Hebblewhite (2003) suggested that the risks within a
mining operation can be categorised as occupying three levels or superimposed layers:

e Level 1 - day-to-day operational risks managed through mechanisms such as training and Safe
Operating Procedures.

e Level 2 - specific site or mining condition-related risks managed through management initiatives
such as Ground Control Management Plans.

e Level 3 - core risks associated with the mining method or system.

Hebblewhite (2003) then listed and discussed the core risks associated with blaeck’caving, longwall mining,
open stoping and room-and-pillar mining, based on the classification of rock mass résponse to underground
mining suggested by Brady and Brown (2004).

The following partial list of generic geomechanics risks and/or risk sourees (mainly Hebblewhite’s Level 2
and 3 risks) that may be encountered in deep and high stress mining includes several issues referred to in
the papers presented to previous seminars in this seriés (geomechanics risks that are specific to caving
methods of mining will be discussed in Section 3.3):

e geological boundaries which may be unknown or inadequately or incorrectly defined (Falmagne
and Frenette, 2006)

e geological structures including dykes, faults.and shear zones, possibly containing low shear
strength minerals (Guilfoyle et al42006;©’Connor et al., 2010)

e several aspects of site hydrogeology

e orientations, spacings, persistenees ahd shear strengths of the joint sets in the rock mass
(Gumede and Stacey,&2007;Stacey and Gumede, 2007)

e values and distributions ofithe compressive strengths and elastic properties of the rock materials
(Kaiser et.al., 2010;/Valley et al., 2010b, 2010c)

e brittleland burst=prone rock (Falmagne and Frenette, 2006)

e the effects of héterogeneity and anisotropy, e.g. foliation, on the mechanical properties of the
rock materials (Valley et al., 2010c)

e rock mass classification values and their use in estimating rock mass strengths
e rock and rock mass strength criteria (Kaiser et al., 2010; Valley et al., 2011)

e (lack of) knowledge of the behaviour of the rock and rock mass under high stress (Kaiser et al.,
2010; Valley et al., 2011) (see Section 5)

e weathered, altered or otherwise weakened rock (Mercier-Langevin, 2010; Mercier-Langevin and
Turcotte, 2006; Potvin and Slade, 2006)

e estimates of the pre-mining stresses and the effects of geological structures and rock mass
anisotropy and heterogeneity on those estimates (Dight and Dyskin, 2007; Thin et al., 2006; Valley
et al., 2010b)
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high horizontal in situ stress fields, even at relatively shallow depths (Barrett and Player, 2002;
Villaescusa et al., 2002)

the relationship of induced stress to rock and rock mass strength, including in squeezing ground
(Mercier-Langevin and Hadjigeorgiou, 2010)

the treatment of variability in the stresses and strengths using probabilistic methods (Reusch and
Beck, 2007; Valley et al., 2010b)

natural seismicity

mining-induced seismicity including the effects of geological structures (Beck et al., 2007; Li et al.,
2002; McGill, 2004; Morrison et al., 2002; Orrego et al., 2010; Yao and Moreau-Verlan, 2010)

excavation and mining layout and sequencing (Beck and Sandy, 2002; Mercier-Langevin and
Turcotte, 2006; Pretorius, 2006)

mining highly-stressed remnants and shaft, rib, crown, sill and waste pillars (Andrieux et al., 2010;
Cockram et al., 2004; Kiboko et al., 2004; Mikula and Lee, 2002; Pretorius;2006;Simser, 2006)

mining under fill, including in sill pillars (Brown, 1999; Simser, 2006)

mining into or under previously mined or caved ground (Sharrogk et al’,)2002)

model formulation, numerical analysis and the interpretation of results (see Section 6)
pillar strength estimation methodologies (Board et'al.,;,2007; Kaiser et al., 2010)
blasting effects

ground support performance (Simser, 2007; Swan et'al., 2006)

fill and fill barricade performance.

Clearly, it will never be possible to carry ‘Qut “enough geological, geotechnical and hydrogeological
investigation and design analysis to enabléfgeomechanics risks of this wide range of types to be fully
accounted for in the planning stages of a mining project. However, as a project proceeds through the
various stages from concept to detailed ‘design and implementation, the level of uncertainty and risk
associated with many of the sounces ofigeomechanics risk identified previously can be expected to be
reduced in the manner illustrated in“Rigure 2. In mining, it might be more usual to describe the stages of a
project as conceptual or seeping, pre-feasibility, feasibility, design, implementation or operation, and
closure, although many miningicompanies now use their own terminologies for these various stages. In
practice, risk assessment and risk management approaches are used to minimise the levels of risk and to
manage the residualsiSksi(see Section 4).
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Figure 2 lllustration of uncertainty reduction during the development of ajproject-until the potential for

failure is minimised to an acceptable level (Valley et al., 2010b,@fter Hoek, 1991)

33 Geomechanics risks in block and panel caving

Over the last 20 years, there has been increased interestfinternationally’in the use of large-scale (or mass
mining) block and panel caving methods of underground minifig. Indeed, there has been a trend for some
companies to plan, and in several cases to bring into production successfully, a transition from large-scale
open pit to underground cave mining methods (Arancibia et al., 2008; Glazer and Townsend, 2010;
Marshall, 2011; Moss et al., 2004). There have als@ been transitions from open pit to sublevel caving (Singh
et al., 2010) and from sublevel caving to blockicaving (Manca and Dunstan, 2008). The following discussion
of modern, large-scale block and panel caving,is based on that given by Brown (2007b).

Figure 3 shows schematics illustrating (a)the essential features of block caving, and (b) a conceptual model
of the stress caving mechanism likelyftéyapplysin ' modern, deep block and panel caving mines.

Historically, block caving was used‘for relatively shallow, massive, low strength, and usually low grade,
orebodies which produced fine, fragmentation. In what is now the usual case in which mining is
mechanised, the low stréngth, of‘the rock mass can place limitations on the practicable sizes of the
extraction level exeavations@and of the equipment that can be used. There is now a tendency for block and
panel caving to be used.in strenger orebodies which produce coarser fragmentation than did the traditional
applications of ble€k caving. This enables more widely-spaced drawpoints and larger, more productive
items of equipmentto bé used. However, there are the dangers that the fragmentation may be too coarse
to be handled by the drawpoints or the load—haul-dump (LHD) equipment, and that caving may become
stalled in these stronger orebodies, particularly those with restricted footprints.
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Figure 3 (a) The essential features of block caving (courtesy of Newcrest Mining'Ltd); (b) Conceptual model
of stress caving (after Duplancic and Brady, 1999)

In the new generation of “super caves”, block and panel caving arenbeing,applied to generally, but not
necessarily, stronger orebodies, to deeper and sometimes “blind”forebodies subject to higher stresses, to
lower grade orebodies, and to greater caving block heights thany has previously been the case. Production
rates of well in excess of 100,000 t of ore per day are beihg planhed in several cases.

Block and panel caving are low cost mining methods thathare capable of automation to produce an
underground “rock factory”. However, they are capital intensive requiring considerable investment in
infrastructure and development before production can_commence. They are relatively inflexible in that,
once mining has started, a change to another'underground method is difficult to achieve economically. This
places great onus on “getting it right” whenga, caving project is being investigated and planned. In addition
to a range of generic and caving-specific geomechanics risks, the extremely large-scale or “super cave”
projects now being planned and implemented involve a range of engineering and management challenges
which include:

e their massive scales, ivolving,project management challenges

o the very long lead times from the start of investigations until the commencement of production -
up to 204€ars in'some| cases

o the high capital'costs, generally in the order of a few billion dollars

e high in sitwroek'temperatures at depth and the associated refrigeration and ventilation
requirements. At the Resolution Copper Mining project in Arizona, USA, for example, the in situ
rock temperatures at the proposed mining depth of 2,200 m are around 80°C (Pascoe et al., 2008)

e the large amounts of development required and its generally long design life

e the desirability from a health and safety perspective of no-entry mining and of the automation of
production, and possibly development, processes

e water and environmental management — ever present concerns in major mining projects
e underground communications and control systems.

The geomechanics-related risks and the application of risk management approaches to block and panel
cave mining have been discussed in some detail by Brown (2007a, 2007b) as well as by a number of other
authors. Generally, these risks may be identified within the context of several major issues:
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e Caveability: will the orebody cave satisfactorily?

e Caving mechanics and performance (including cave initiation by undercutting and continued cave
propagation): will the cave propagate at an acceptable rate and in a controlled manner spatially?
Can the process be stopped and started once initiated (Marshall, 2011)? Note that the stress
caving mechanism illustrated in Figure 3(b) produces microseismic events that can be recorded to
monitor the progress of caving (Beck et al., 2006b; Duplancic and Brady, 1999; Glazer and
Townsend, 2010).

e Fragmentation: will the fragmentation produced naturally at the draw points be neither too
coarse nor too fine?

e Excavation stability: will the undercut and extraction level excavations, in particular, remain stable
throughout their design lives? In many cases, there is a major risk of damaging rock bursting (Beck
et al.,, 2007).

e Major operational hazards: is there a risk of major collapses, rockbursts, airBlasts, and/or mud,
slurry and water inflows?

e Surface subsidence: can we predict the nature, extent and development©f surface subsidence
and its impact on natural surface features and surface installations?

Chitombo (2010) has succinctly summarised some of the major geomechanics-related challenges or risks
that may threaten the future viability of cave mining as:

e “not being able to achieve continuous caving resdlting in cave,stalling or slow caving rates;
e differential cave propagation due to the presence afidifferent geological lithologies;

e seismicity caused by unfavourable undercutting practices;

e early dilution or waste ingress and @cceleratéd fines migration containing waste;

e structural collapses and instabilities duexto mining of large panel widths; and

e extraction level instabilities duéito poorwundercutting practice, the presence of remnant pillars or
compaction of caved materidls,(asha.consequence of poor draw practices.”

4 Risk assessment@andimanagement

The last 20 years or so have seen the relatively rapid development and application of risk assessment and
management methods to evaluaté and manage the geomechanics and other risks associated with mining
projects and opgerationsgEarlyzapplications of risk concepts to underground mining geomechanics evaluated
the influence of¥parameter and other input variability on the probability of failure using the general
approach illustratedyinfFigure 2 (McCracken and Stacey, 1989; Pine, 1992; Tyler et al., 1991). The
consideration of the cost implications of the calculated probabilities of failure, often using cost-benefit
analysis, followed slightly later (Brummer et al., 1993; Diederichs and Kaiser, 1996; Horsley and Medhurst,
2000; Suorineni et al., 1995). The application of probability, risk, reliability and capacity and demand
concepts to other areas of geotechnical engineering, including open pit mine slope stability, had preceded
these developments by a few years (Harr, 1987; McMahon, 1975; Priest and Brown, 1983; Whitman, 1984).

The Australian mining industry has used risk-based management techniques since the 1980s (Hebblewhite,
2009). Risk-based underground mining regulations were introduced in Australia from the early 1990s. In
mid-2011, Safe Work Australia published draft national risk-based model Work Health and Safety
Regulations and Codes of Practice for Ground Control in Open Pit and Underground Mines. In South Africa,
an industry Code of Practice requires that a risk assessment be carried out before any new support system
is introduced (Stacey et al., 2006).
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To the best of the writer’s knowledge, detailed risk assessment and management approaches of the type
illustrated in Figure 1 were applied to open pit mine slope stability before they were applied to the wider
range of underground mining geomechanics risks. Examples of open pit slope stability applications are
given by Brown and Booth (2009), Calderén and Tapia (2006), Steffen (1997), Steffen et al. (2006, 2008),
Tapia et al. (2007) and Terbrugge et al. (2006). This difference may be accounted for, at least in part, by the
fact that the geomechanics risks associated with a given underground mining project or operation,
including cases of deep and high stress mining, are likely to be more wide-ranging and varied than those
associated with bench, inter-ramp and overall slope stability in a given open pit mine.

As in Figure 1, risk assessment and management approaches in underground mining, especially quantitative
risk assessment approaches, are more likely to be applied to particular aspects of mining or mining risk, or
to components of the overall mine structure such as shafts, stopes, ore or rock passes, ventilation raises,
and crusher chambers, than to the mining operation as a whole (Cockram et al., 2004; Dunn, 2004; Joughin
and Stacey, 2005; Logan and Tyler, 2004; Stacey and Gumede, 2007). It would appear to the writer that
there is scope to further develop and apply some of these approaches. As discussed'in several papers to
this series of international seminars, risk-based approaches are widely used for the assessment and
management of seismic risk (Durrheim et al., 2007; Hudyma et al., 2006; Pretorids, 2006).

Risk assessment forms an important part of the conceptual, pre-feasibility “‘and feasibility studies of
potential mining projects, whether they be new developments on greengfield sites or represent expansions
of, or changes to, existing operations. It allows significant, and sometimes_critical, risks to be identified
during the planning stages and risk management options or coftrol ‘measures to be devised and the
residual risks evaluated. The writer has had experience ofs€ases in which the results of this process were
critical to decisions taken at senior management and Board leyvels as'to" whether or not to proceed with a
project. Risk management plans are also an essential feature©f modern operations. Figure 4 shows the risk
management decision-making process adopted by Newcrest Mining’s Cadia Valley Operations. This
approach provided the basis for the development.offa,range of operational risk and hazard management
plans including the air inrush hazard management plan fot the Ridgeway Mine discussed by Logan and Tyler
(2004).
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HMMP: Hazardous materials management plan.

Figure 4 An operational risk management decision-making process (Brown and Booth, 2009, courtesy of
Newcrest Mining Ltd)
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5 Rock behaviour under high stress

5.1 Background

The behaviour of rock under elevated confining pressure has been investigated in standard triaxial
compression tests (with o, > g, = g;, where g,, 0, and g5 are the principal stresses) for more than 100 years
since the pioneering work of von Karman (1911) who tested Carrara marble at confining pressures of up to
326 MPa. Mogi (2007) summarises the results of standard triaxial tests on a wide range of carbonate and
silicate rocks tested at confining pressures of up to 500 MPa. The treatment of this subject given in the
standard text books (Brady and Brown, 2004; Jaeger et al., 2007) would suggest that it is reasonably well, if
not fully, understood. However, a number of recent developments, including some made at this series of
Deep and High Stress Mining seminars, suggest that the behaviour of rock in the context of deep and high
stress mining may not be as well understood as is often supposed. For purposes of illustration, this
discussion will focus mainly on the behaviour of rock material rather than on the more,complex behaviour
of in situ rock masses.

5.2 Applicability of standard strength criteria

Several peak strength criteria and constitutive laws have been developedyforarock and used in rock
engineering design analyses. Currently, perhaps the two most widély used strength criteria are the
Mohr—Coulomb and the Hoek—Brown criteria (Brady and Brown, 2004). Thesclassic Mohr—Coulomb peak
strength criterion consisting of two independent cohesive and frictional components does not provide a
realistic representation of the progressive fracture and bréakdown of rock under stress. The Hoek—Brown
criterion is widely applied to jointed rock masses but may.alsode applied to intact rock. In fact, much more
data for intact rock than for rock masses were used in its original development by Hoek and Brown (1980).
One of the acknowledged deficiencies of both the Mohr—Coulomb and Hoek—Brown criteria is that they do
not allow for the influence of the intermediate pfincipal stress on peak strength. Several adaptations of
these criteria and new criteria that seek to“overceme this deficiency have been proposed. A particularly
promising criterion that has been brought to the writer’'s attention recently is the Christensen criterion,
developed originally for ceramic material§ (Christensen, 2007; Hammah and Carvalho, 2011). As discussed
in some detail previously, the writer considers that the Hoek—Brown criterion has often been applied and
extended to circumstances for which'itsiuse'was not originally intended (Brown, 2008).

Aspects of the Hoek—Brown criterion,that have received considerable attention from Diederichs, Kaiser,
Martin and their co-workers.in Canada; over the last 15 years or so, are the difficulties associated with its
use in modelling brittle spalling\failures in strong rock around underground excavations and in estimating
rock strength undér‘high‘canfinement (Bahrani et al., 2011; Diederichs et al., 2004; Kaiser and Kim, 2008;
Kaiser et al., 2010; Martimand’Christiansson, 2009; Valley et al., 2011). As argued by Kaiser et al. (2010) and
subsequently by“Bahrani /et al. (2011) and Valley et al. (2011), rock and rock mass strengths under high
confinement may beghigher than those derived from standard approaches. They suggest that the
mechanics of the fracturing of rock under low and high confinement could differ significantly, and that the
constant rock mass degradation approach used in the Hoek—Brown criterion could be flawed. They propose
a modified Hoek-Brown failure criterion which incorporates a confinement-dependent value of the
Geotechnical Strength Index (GSl) and produces a sigmoidal peak strength curve. Figure 5 shows a further
modification of this criterion fitted to experimental data for Carrara marble and a quartzite (Valley et al.,
2011). In these cases, the standard Hoek—Brown criterion with a constant value of the parameter mi can
over-estimate rock and rock mass strengths at low confining pressures where tensile or extensional
mechanisms predominate, and under-estimate them at high confinement where shear failure mechanisms
operate. Reasonable fits to a range of experimental data can also be obtained using bi- or tri-linear
envelopes or a generalised Hoek—Brown envelope with a high value of mi and a low value of the
Hoek-Brown parameter, a. These findings have obvious implications for the behaviour of deep and high
stress mining excavations.
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Figure 5 Sigmoidal and modified generalised Hoek-Brown failure criteria fitted'todlaboratory compression
test data for (a) Carrara marble (from Gerogiannopoulos, 1976) and (b),quartzite (Valley et al.,
2011)

Another, possibly less significant, reason why standard testing methodshand strength criteria may
underestimate the strength of rock around deep excavatiehs under high/stress is that on the boundary of
an underground excavation where the minor principal Stress is either zero or very small, the rock is in a
state of approximately biaxial compression with the value'of the intermediate principal stress, o,, which
generally acts along the axis of the excavation, being non-negligible when compared to the major principal
stress, o;, which generally acts tangentially at the ex€avation boundary. Recent studies by Yun et al. (2010,
2011) have shown that, depending on the &tress path followed and the o,/0, ratio used in the test, the
compressive strength of granite in biaxial compressioncan be more than 50% greater than the uniaxial
compressive strength, o., of similar sizedfspécimens of the same rock. Brown (1974) obtained a similar
result for marble but with a lesser incredse over'the standard o. value.

5.3 Influence of core damage

An important issue that is nothalways fully recognised, or taken into account when considering rock
behaviour in the contextfof deepiand high stress mining, is the influence of stress relief on the cores
extracted by drillingsand tested jinrorder to establish rock material properties and strength criteria. In fact,
the influence of damage,onthe rock properties measured on cores recovered from relatively high stress
environments hasgeen studied by a number of investigators. Recently, Valley et al. (2010a) summarised a
number of findings of Eberhardt et al. (1999), Lanaro et al. (2009), Martin and Stimpson (1994) and Watson
et al. (2009) in the following way:

“They (Martin and Stimpson, 1994, Eberhardt et al., 1999) showed that the UCS, Young’s modulus
and p-wave velocity measured on cores decrease and Poisson’s ratio increases as samples are
obtained from rock at increasing depth and consequently increasing in situ stresses. They suggest
that these effects are caused by increasing microcracking with depth. This is also supported by the
strong non-linearity of stress versus volumetric strain from damaged samples, reflecting higher
volume of closing micro-cracks at the early stage of loading. Similar behaviour was also observed
on samples taken from deep mines in South Africa (Watson et al., 2009). Crack count using
Scanning Electron Microscope (SEM) analyses support that samples from depth contain larger
amounts of microcracks. Lanaro et al. (2009) reported a strong negative correlation between
sample strength and measured in situ strength and explained this observation by sample
disturbance.”
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As have others before them (Corthésy and Leite, 2008; Matsuki et al., 2004), Valley et al. (2010a) carried
out a series of numerical analyses to simulate the drilling process and its effect on the recovered core. Their
results suggest that, as the drilling progresses and the induced stress reaches a particular threshold, tensile
yielding initiates from the outer edge of the core and propagates towards the centre of the core when the
bit passes the point in question. However, while extensive yielding or damage may be generated in the
core, no damage is produced in the borehole wall at the simulated stress level. This finding has important
implications for a number of stress measurement methods and for the analysis of excavation stability using
intact rock strengths determined from laboratory tests on recovered core.

The stress path followed by the recovered core and by the surrounding rock during the drilling and core
recovery process can be expected to have a significant influence on the damage suffered by the core. As
has been argued most cogently by Harrison and Hudson (2003), during the evolution of the final stress state
to which the rock is subjected in any application, the failure locus may be reached before the anticipated
failure state (assuming that the failure locus is known accurately), in which case failure will occur
unexpectedly. In fact, the complete stress path defined as the variations in the magnitddes and orientations
of the stress tensor components resulting from engineering-induced or natural “changes, should be
considered in sampling and testing and in design analyses for underground excavationsy»In many mining
applications, including on and around the extraction levels of block and panel caving gperations, the stress
state and the stress path taken to reach that stress state can vary significantly ‘déring construction and
operation.

5.4 Embrittlement at high confining pressures

In a series of recent papers, including some presented t0 previous Deep and High Stress Mining seminars,
Tarasov and his co-authors have discussed the phenomenohfof super brittleness in “hard” rocks (Tarasov,
2008a, 2008b, 2010, 2011; Tarasov and Dyskin, 2005; Tarasovaand Ortlepp, 2007; Tarasov and Randolph,
2007, 2008, 2011). Received wisdom is that roeckswtested in conventional triaxial compression show
increasing ductility as the confining pressure, o3, inCreases. However, in this series of papers, Tarasov
presents evidence from his own experimental‘ihvestigations and from those of a number of other authors
who have been concerned mainly with fadltfermation at depth, to suggest that after a critical confining
pressure has been reached (Osmin (empf@in Figure 6), brittleness may increase progressively within an
embrittlement range. This concept may, appear to be counter-intuitive, but the evidence for its existence
under macroscopic shear ruptusey conditionsiin strong rocks seems compelling. This behaviour is not
observed in what Tarasov (2040) refers to as “soft” rocks, although he does not provide definitions of
“hard” and “soft” in this context.iTarasov (2008a, 2008b, 2010) proposes a new frictionless model within
shear rupture zones that consist of segmented “domino” or “book shelf” structures to account for the
super brittlenessgphenomenon./Although some ramifications of the mechanisms proposed by Tarasov and
his co-authors have béenlobserved in natural faulting and in shear zones associated with rockbursts in the
deep level gold mines of South Africa (Tarasov and Ortlepp, 2007), it is probably unlikely that they will be
encountered in deep'@and high stress mining more generally.
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Figure 6 Typical variations in fracture pattern with confining pressure, o 3 (Tarasov, 2010)
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6 Numerical modelling

6.1 Numerical modelling in rock mechanics and rock engineering

The discussion to be presented in this section is a modified version of that given by Brown (2011) in
discussing the progress made in rock mechanics over the last 50 years.

The application of numerical methods, specifically the finite element method, to rock engineering began in
the early to mid 1960s. Since that time, the development and application of numerical methods of analysis
has been a major feature of rock mechanics and rock engineering research and practice. A comprehensive
review of the formulation of numerical methods and their application in rock mechanics and rock
engineering is given by lJing (2003). Jing’s paper contains no less than 774 references to the published
literature in the field to 2003, but obviously does not deal with more recent developments.

The main numerical methods were developed originally for continuum applications but, from the 1960s,
were adapted to allow for the discontinuous nature of rock masses (Goodman et alg'1968; Wittke, 1977),
often treating them as equivalent continua. Importantly, specific discontinuum,methods of numerical
analysis have been developed. In rock mechanics and rock engineering, these yariousinethods have been
applied mainly to stress and deformation analyses, but they have also been applied to the modelling of
fracture processes and of fluid flow and heat transfer in rock masses. Fallowing,Jing (2003), the numerical
methods that have been developed or adapted for rock mechanics and rock engineering applications may
be classified as:

¢ Finite Element (FEM) and related methods, including meshléss methods (Beck et al., 2009, 2010;
Goodman et al., 1968; Wittke, 1977, 1990; Zienkiewicz, 1977).

¢ Finite Difference Methods (FDM) including the Finite Molume (FVM) approach, applied perhaps
most notably in the well-known FLAC series;ef codes (Hart et al., 2008; Itasca, 2011; Sainsbury et
al., 2011).

e Boundary Element Methods (BEM) using direct'and indirect, including displacement discontinuity,
formulations (Beer and Watson,2992;Brady, 1979, 1987; Crouch and Starfield, 1983).

e Discrete Element Methods (BEM)i(ling and Stephansson, 2007) including the explicit or Distinct
Element Method (Cundall,,1971),1987%; Itasca, 2011), the implicit or Discontinuous Deformation
Analysis Method (Ma,,2011;Shi and Goodman, 1985), key block theory (Goodman and Shi, 1985),
DEM formulations for particle'systems including bonded particle systems (Potyondy and Cundall,
2004), and quasisstatie.and’dynamic lattice network models (Cundall, 2011; Cundall and
Damjana€;2009).

e Hybrid erlinked methods of a number of types (FEM/BEM, DEM/BEM, DEM/FEM — Beer and
Watson, 1992; Brady, 1987; Elsworth, 1986; Lorig and Brady, 1982).

e Discrete Fracture Network (DFN) based methods which may be combined with a number of the
other methods (Beck et al., 2009; Pine et al., 2006; Rogers et al., 2010).

e Coupled hydro-mechanical (Beck et al., 2010) and thermo-hydro-mechanical models (Detournay,
1995; Hudson et al., 2001; Stephansson et al., 1996).

e Inverse solution methods as used in back analysis in rock engineering (Gioda and Sakurai, 1987;
Sakurai, 1993).

Despite the significant advances that have been made, it must be recognised that the successful application
of numerical methods in rock engineering design analyses depends to a great extent on the geotechnical
models, the constitutive models and the boundary conditions developed from the site characterisation
data. Because of the difficulty of defining some of the input data deterministically, probabilistic or
stochastic methods are often used to represent the rock mass geometry, the mechanical properties of
rocks and rock masses, and in the analyses themselves. When formal probabilistic or stochastic methods
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are not used, a range of input data may be used in sensitivity studies. As Starfield and Cundall (1988)
pointed out, rock mechanics problems are data-limited and so cannot be modelled unambiguously.

As the numerical methods of design analysis outlined here were developed, high levels of expertise in the
numerical methods themselves, and in their application in rock mechanics and rock engineering, were
developed by a number of individuals and groups internationally. However, it has been the writer’s
experience that, despite the vast range of knowledge and experience that is now available in this field, the
application of these methods in engineering practice often suffers because some analysts regard the
computer codes used as “black boxes” and pay insufficient attention to the mechanics of the problems
concerned, the failure criteria used, the input data including rock and rock mass properties, and to the
meaning or “believability” of the results obtained. Furthermore, there is a tendency to disregard features of
a problem that are not catered for specifically in the software selected or available for use. Although the
paper was written more than 20 years ago, the writer considers that many of those seeking to use modern
numerical methods in rock engineering design analyses should pay greater attention to the guidance
provided by Starfield and Cundall (1988), especially their warning that numerical modelling is an aid to
thought rather than a substitute for thinking.

6.2 Numerical modelling in deep and high stress mining

Serious consideration of the geomechanics problems associated with deep and, high stress mining began
before the advent of modern high-speed digital computers and the numerical modelling methods listed in
Section 6.1. For example, a significant programme of research on fock/mechanics as applied to deep-level
hard rock mining and the associated problem of rockbursts, was established in South Africa in 1953 (Hill,
1954, 1966). At around the same time, a similar problém was under‘investigation in the Kolar goldfield,
India (Taylor, 1962-63). And as Morrison et al. (2002) diseuss, rockbursting has been experienced and
investigated in North American hard rock mines for more than‘200 years.

In the South African programme of research intg the phenomenon of rockbursting associated with the
mining of deep, tabular or reef deposits, elastic stress and deformation analyses were originally carried out
using closed-form solutions developed specifically, forthe purpose (Cook et al., 1966; Salamon, 1963, 1964,
1968). An electric resistance analogue approachyto the solution of the complex equations involved was also
developed (Cook et al., 1966; Salamon ‘et al.,/1964). Salamon’s solutions for isotropic and transversely
isotropic ground formed the basisfof ‘€arly“calculations of energy release rates (ERR) and excess shear
stresses (ESS) (Ryder and Jagerf2002). By the’late 1960s, the MinSim program had been developed in
assembly language (Plewman et al., 1969). Further development of 2D and 3D displacement discontinuity
kernels (Crouch and Starfiéld, 4983),led to the development of successive versions of numerical modelling
programs such as MINAP}, MINF, DIGS and BESOL (Ryder and Jager, 2002).

A wide range of complter-codes have been used in the numerical analyses reported in the papers
presented to the'Deep and High Stress Mining series of seminars. They include the range of displacement
discontinuity and relatéd programs introduced previously (MinSim, MINF, DIGS, BESOL), as well as FEM
(ABAQUS, Phase2), BEM (Examine2D, Examine3D, Map3D, Map3D Fault-Slip), FDM (FLAC, FLAC3D) and
DEM (3DEC, PFC3D) codes. The 3D elastic boundary element code, Map3D, and its variants, is perhaps
more widely represented in the papers than any other code, particularly in the papers from Australia and,
to a lesser extent, South Africa. The most advanced numerical modelling reported in the series of
proceedings includes that carried out by Beck et al. (2006a, 2006b, 2007) and Reusch and Beck (2007) using
the 3D, non-linear, FEM code, ABAQUS, with continuum, discontinuum, strain softening and dilation
modelling capability. These authors calculate values of dissipated plastic energy for use in the
interpretation of their results.

Figure 7 shows an example of the modelled 3D plastic strain at an early stage of extraction of a block cave.
Differential growth in the damage zone around the cave and the effects of the regional structure are clearly
evident. The mine was able to adjust the cave layout to optimise the effects of plastic strain (Beck et al.,
2006b).
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Figure 7 Example of modelled plastic strain at an early stage of/the extraction of a block cave (Beck et al.,
2006b)

Despite the power and adaptability of numericalgmodelling codes, and the wide range of numerical
modelling expertise now available, as notedsabove, the warnings sounded by Starfield and Cundall (1988)
still have to be borne in mind. In this series of, seminars, Beck et al. (2006a), O’Connor et al. (2010) and
Wiles (2007) have pointed to the need to use,evidence-based model calibration in order to obtain reliable
predictions. Valley et al. (2010b) have discussed the need to consider a range of uncertainties in modelling
the behaviour of underground excavationsjRedsch and Beck (2007) and Valley et al. (2010b) have used a
Point Estimate Method (PEM) in_preference to, the more widely used Monte Carlo simulation method, in
analysing the effects of parameter variability in FEM simulations. It has also been shown that the utility of
numerical modelling programs“can be enhanced by their integration with engineering design, mine
planning and post-processingseftware (Maybee et al., 2006; O’Connor et al., 2010; Spottiswoode, 2004).

7 Further glvalleriges

This paper has discussed only some of the risks and challenges faced by deep and high stress mining. For
example, McCarthy (2002) suggested that the risks that must be addressed in feasibility studies for deep
mining projects include:

e increased geological risk due to sparse data density
e increased capital risk due to the higher cost of establishing the mining operation

e increased technical risk due to the challenging environment for materials handling, ventilation,
services, employees and ground control.

Although the review given here of progress made under some of the themes of this seminar shows that
significant advances have been made in understanding and practice, it is clear that the generic risks
identified by McCarthy (2002) remain largely unresolved and have to be managed in the various stages of
deep mining projects. The further challenges identified and discussed briefly here will concern only some of
the geomechanics-related issues touched on earlier in this paper.
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Many of the geomechanics risks and risk sources listed in Sections 3.2 and 3.3 arise from inadequate (in
several senses) geological, geotechnical and hydrogeological knowledge, even at the feasibility study and
implementation stages of deep mining projects. In general, these inadequacies arise because of the
inability to sample and investigate even very small percentages of the orebodies and the rock masses
influenced by mining during the conceptual, pre-feasibility and feasibility stages of projects. Generally,
access to the mining depth is difficult and expensive to obtain, so that the only information available often
comes from geological and geotechnical drilling campaigns supported in some cases by geophysical surveys
and geological interpretation. Even the construction of an 8.4 m diameter exploration shaft to a depth of
approaching 2.2 km in the pre-feasibility stage of the Resolution Copper Project, Arizona, and the
development of an exploration level with associated investigation and testing during the feasibility study
stage, cannot be expected to provide the detailed information and answers required for fully-informed
decision making (Brown, 2007b).

The following paragraphs identify and discuss briefly just some of the challenges remaining in this general
area and in some of the areas discussed earlier in this paper.

Geological and geotechnical data collection and site characterisation: Many of thesgeomechanics risks and
risk sources listed in Section 3.2 relate to the quantity and quality of the geolagical and geotechnical data
collected and to their use in site characterisation. In particular, improved methods are required for
identifying major geological structures (e.g. dykes, faults) ahead of mining,"and for collecting the 3D
discontinuity geometry data, including fracture sizes and apertures, required in Discrete Fracture Network
(DFN) modelling, particularly at depth. It is often said that we need to/e,ableyto see through the Earth or
make the Earth transparent (Fairhurst, 2011; Hood et al.,“2999). It /is often further suggested that
geophysical methods have the potential to provide this€apability, but'the writer must admit that he does
not understand exactly how.

Estimation of pre-mining stress fields: The measurement, or perhaps more realistically, the estimation, of
pre-mining stress fields provides essential inputs into numerical stress and deformation analyses of
underground excavations, mining layouts andjextraction/scheduling. Quite often, attempts to measure the
stress tensor at a number of points with ajview™to establishing the pre-mining stress field yield
unsatisfactory results, not only because of measurement error, but also because of the inherent variability
of the stress field resulting from, inter alia, variations in rock types and their mechanical properties and
from the influence of structural features. As a result of his association with a number of large-scale and
deep block and panel caving projects, in“recent years the writer has become convinced of the value of
studies of the type reported by Kloppenburg et al. (2010), Windsor (2009) and Windsor et al. (2006), in
which the structural setting and kinematics of a mining district are analysed on an historical basis, and the
observed structuregstrain‘and stress are reconciled.

Understanding (rock b€@haviour under high stress: Some recent advances in the understanding of rock
behaviour under high stress were summarised in Section 5. It is clear from this summary that a number of
major issues in thistaréa remain unresolved (for example, making allowance for the influences of core
damage and of the stress path to failure), and that advances in knowledge and understanding will be
required if we are to be able to predict adequately the behaviour of a range of mining excavations at
depths in the order of 2 km. Further development of the approaches discussed in Section 5 is considered
likely to produce some of the advances required.

Formulation and evidence-based calibration of numerical models: As demonstrated in Section 6, numerical
modelling for rock engineering applications, including application to deep and high stress mining, has been
developed and refined to a considerable extent in recent decades. In the writer’s opinion, the further
developments required are not in the numerical models themselves (although such developments can be
expected to continue to occur and to be welcome), but in the way in which they are applied to rock
engineering problems in terms of model formulation, the rock and rock mass properties used and the
allowance made for their variability, the failure and/or acceptance criteria adopted, and the interpretation
of the results, including the evidence-based calibration of the models referred to in Section 6.
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Quantitative risk analysis and management: The writer considers that there is a need for the further
development of quantitative risk analysis and management methods and their application at all stages of
deep (and other) mining projects, including in decision-making on mining methods and strategies, and in
the estimation of capital and operational mining costs, and the costs of risk mitigation measures and
residual risks, using approaches such as that developed by Cretu et al. (2011).
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